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LETTER TO THE EDITOR 

A crossover from Fermi-liquid to non-Fermi-liquid 
behaviour in a solvable one-dimensional model 

Y Chen and K A Muttalibt 
Department of Mathematics. Imperial College, London SW7 ZBZ UK 

Received 3 March 1994 

Abstract. We consider a quantum many-body problem in one dimension described by a 
Jaslrow-type wavefunction. chamcterized by an exponenl A and a parameter y .  In the limit 
y = 0 the model becomes identical to the well known l / r 2  pair-potential model: y is shown to 
be related to Ihe strength OF a many-body correction to the l /r’  interaction. Exact m u h s  For 
the one-particle density matrix are oblained for all y when A = 1, for which the I/? p a t  of the 
interaction vanishes. We show thal with increasing y .  the Fermi-liquid state (at y = 0) crows 
over to distinct y-dependent non-Fed-liquid stat=. characterized by effective ’temperatures’. 

A special class of Jastrow-type wavefunctions [ I ]  
N 

~ ( u l ,  . . . , U N )  = c n luo - ubli (1) 
l,<o<b,<N c=I 

appear frequently in quantum many-body problems. In one dimension, many-body 
Hamiltonians with pair potentials of the form l / r 2  (or its periodic equivalent llsin’r), where 
r = (U. - ub) .  have exact ground-state wavefunctions of the Jastrow form [2-51. It has 
been proposed that variational wavefunctions of this type give reasonably good descriptions 
of models for strongly interacting fermions [&I 11. It is therefore of interest to investigate 
the properties of such wavefunctions as exactly as possible. Of particular interest is the 
question of whether such a wavefunction describes how interaction can change a Fermi 
liquid into a non-Fermi-liquid state. 

In the solution of the I / r Z  model, the parameter h in (1) is related to the strength of the 
I/rZ pair potential; in particular, h = I corresponds to the free-fermion case. Unfortunately, 
the exact density matrix for this model can be obtained only for a few special values of h 
[2, 121, so the question of the nature of the crossover from the freefermion to the interacting 
non-Femi-liquid state cannot be addressed exactly in this model. In the present work, we 
consider a onedimensional wavefunction of the above form which can be considered as 
a generalization of the wavefunction corresponding to the l / r2  model. In addition to the 
parameter A, our model contains an additional parameter y which we show to be related to 
the strength of a many-body correction to the l/r2 interaction. We obtain the one-particle 
density matrix for this model exactly for all y ,  for the particular case of h = 1. Thus y = 0 
represents the free-fermion case. We show that with increasing y .  the Fermi liquid state is 
destroyed by an effective non-zero ‘temperature’ induced by interaction. 

t Permanent address: Physics Department, University of Florida, Gainesville, FL 32611. USA. 
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It is quite remarkable that the square of the expression (1) with V(U) = Au’ and 
A = $, 1 or 2 is identical in form to the joint probability distribution of the eigenvalues of 
random matrices in a Gaussian ensemble [13]. The two-level correlation function for such 
an ensemble is known exactly from the theory of random matrices, and the analogy was 
exploited by Sutherland [2] to obtain the one-particle density matrix for the l / r 2  model. (In 
general, for an arbitrary V(U), the n-point correlation function can be obtained explicitly 
in terms of orthogonal polynomials defined with V(u) as its weight factor.) In the present 
work we exploit a similar analogy to a recently i n d u c e d  family of random matrices [I41 
which may be considered as a generalization of the conventional Gaussian ensemble. We 
consider a wavefunction given by (1) with a more general V ( u )  given by 

characterized by a single parameter y .  Here ff&; p) is the Jacobi theta function [E], 
p = e- rrz/Y and w has the dimension of 1/[lengthl2. For y = 0, V(u) = ;mu2, and 
the wavefunction reduces to the well known solution of the l / r2  pak potential. The case 
A = 1 then represents a free-fermion problem (with the choice of Fermi statistics), with 
the one-particle density matrix given by sin[zDr]/(xr), D being the density of particles. 
The parameter y ‘deforms’ the harmonic well into a weakly confining [In uI2 term for large 
enough U, as shown in figure 1. We will show that this deformation leads to a qualitative 
change in the density matrix; for X = 1 this comesponds to a change from a Fermi-liquid 
to a non-Fermi-liquid state. 

Figure 1. V(u)  chamtenzing the model wavefunction wnsidered. as given by equation (Z), 
for various values of y ,  The parameter w has been set equal to unily. 

In order to understand the role of the parameter y ,  let us concentrate for the moment 
on the small-y (<<a2) l i t  where the second term in equation (2) can be neglected, and 
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the Hamiltonian corresponding to the above wavefunction has a simple form. In this limit, 
to leading order in y .  the Schrijdinger equation (in units where @/2m = 1) can be written 
as 

,,.- 
+oZ[l+ 2yl E (U# - o [ N  + A N ( N  - 1)1 

Note that for y = 0, the Hamiltonian reduces to the 1/(uk - u,)~ pair potential, with energy 
E = o[N + A N ( N  - I)] [2, 31. For A = 1, with the choice of Fermi statistics, this becomes 
a free-fermion problem. However, for y # 0, a many-body correction term survives even 
for A = 1. Nevertheless, the density matrix for A = 1 can still be found exactly for all 
y .  We will show that it corresponds to a non-Fermi-liquid state, y playing the role of an 
effective temperature. 

As mentioned before, we obtain the exact density matrix corresponding to the 
wavefunction defined by equations (1) and (2) for N + CO and for all y .  by exploiting the 
analogy of the present problem with the random matrix model recently consin~aed in [14]. 
It is given by 

where 

and 
p = sinh-'(fiu) and U = sinh-'(fiu) 

81(x; p )  is a Jacobi theta function [151 and f ( y )  is a known function of y .  For y << nz, 
a simpler form for the density matrix is obtained. 

In the limit y + 0, in terms of thedensity at the origin 00 = &u/y) ' /2,  this reduces to the 
free-fermion density matrix p ( u  - U) = sin[Don(u - u) ] /n (u  - U). These oscillations are 
the characteristic signature of a normal Fermi system; its Fourier transform-the momentum 
distribution-is the familiar step function. On the other hand for increasing y. these 
oscillations begin to die out, as shown for the normalized p ( u ,  0) in figure 2, destroying 
the Fermi-liquid-behaviour. (We note that the density matrix is not translationally invariant, 
and the non-Fermi-liquid state is different from other translationally invariant non-Fermi 
liquid states like the Luttinger liquid.) The Fourier transform of p(u, U) would involve two 
external momenta and this makes comparison with the Fermi liquid momentum distribution 
difficult. 

= JTzdu e'*"p(u.O). 
With the change of variable y = sinh-'(2yDou), we have 

We shall instead consider the Fourier transform of p ( u ,  0), 

nk = - S W d y  cothy [sinz ( Iklsinhy + y) - s i n z  (-smh Ikl . y - y)] . (7) n o  2~ nDo 2~  DO 
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0 . 2  

Figure 2. The one-particle normaliztd density matrix p(u. O)/Da as obtained from equalion (6), 
for values of y between 0.001 and 0.01. The parameter o has been se1 equal to unity. 

For small enough y we can replace sinhy by y within the sine function, and cothy by 
l/sinhy. The resulting distribution is given by 

where n [ x ]  = ]/[e“ + I ]  is the Fermi function. As expected, this reduces to the step of 
the free fermions when y = 0. Moreover, we find from the explicit expression (8) that 
y plays the role of an effective ‘temperature’. This may be seen in a more physical way 
by considering the static form factor S, = 1 - bk, where b, = J-”,du eikU[lp(u,O)]*, is 
the Fourier transform of the pair correlation function which is the probability of finding a 
particle at U given that there is a particle located at zero. According to a standard sum-rule 
argument, the dispersion relation of the elementary excitation in the long wave-length limit 
can be expressed as 6, = k2/2mSk [16]. For y = 0 we have a sound-like dispersion since 
Sk - k ,  (k -+ 0) .  while for y # 0 it can be shown that So = constant [ 171 which is consistent 
with the interpretation of y as an effective temperature. In this limit Ek/k -+ 0 k -+ 0. 

In summary, we have considered a one-dimensional quantum many-body problem 
described by a Jastrow-type wavefunction characterized by an exponent A and a parameter 
y .  We show that our model is a generalization of the l / r Z  pair-potential model considered 
by Calogero and Sutherland, which is obtained in the limit y = 0. We obtain the exact 
one-particle density matrix for all y for the case A = 1 where the l / r2  interaction vanishes. 
For y = 0, and the choice of Fermi statistics, this becomes a free-fermion problem, and 
we recover the step function for the momentum distribution. For y # 0, an interaction 
term survives for the case A = 1 and the resulting momentum distribution is smeared out, 
destroying the Fermi liquid. The explicit expression for the momentum distribution as a 
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function of y for small y shows that the destruction of the Fermi-liquid state occurs as 
increasing interaction induces an increase in the effective ‘temperature’ in this regime. 
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F’radeep Kumar for discussion, and John Klauder for valuable comments on the manuscript. 
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